خودریختی رده ای پایا p-گروه های متناهی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم
- نویسنده محبوبه کاظمی گلباغی
- استاد راهنما علیرضا عبدالهی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1389
چکیده
خودریختی ? از گروه g را خودریختی رده ای پایا می نامیم، هرگاه برای هرg ?x، داشته باشیم xg?(x)?، که در آن xg رده مزدوجی x در g است. مجموعه تمام خودریختی های رده ای پایا g را با autc(g) نمایش می دهیم. در این پایان نامه، p-گروه های متناهی مانند g را که در آن ها |autc(g)| به بیشترین مقدار خود می رسد را بررسی می کنیم. برای این منظور ابتدا نشان می دهیم که برای هر p-گروه غیربدیهی g از مرتبه p^n رابطه ی |aut_c (g)| ? {?(p^((n^2-4)/4 ) باشد زوج n اگر @p^((n^2-1)/4) باشد فرد n اگر )? برقرار است. سپس p-گروه های متناهی را که رابطه ی فوق برای آن ها به تساوی تبدیل می شود، بررسی خواهیم کرد.
منابع مشابه
برابری گروه خودریختی های مرکزی با گروه خودریختی های حافظ رده تزویج روی p-گروه های متناهی
فرض کنید g یک گروه باشد. گروه همه خودریختی های g را با aut(g) نشان می دهیم. خودریختی ? از aut(g) را یک خودریختی مرکزی گوییم در صورتی که برای هر ، x ? g x^{-1}?(x) ? z(g) . مجموعه ی همه خودریختی های مرکزی gکه آن را با autcent(g) نشان می دهیم یک زیرگروه نرمال aut(g) است . خودریختی ? از aut(g) را یک خودریختی حافظ رده تزویج گوییم در صورتی که برای هر ?(g) ? g^{g} ،g ? g ...
15 صفحه اولp-گروه های غیر آبلی متناهی با خودریختی غیرداخلی از مرتبه ی p
فرض کنید p یک عدد اول است. یک حدس قدیمی بیان می کند که هر p-گروه غیرآبلی متناهی یک خودریختی غیرداخلی از مرتبه p دارد. حال فرض کنید g یک p-گروه غیرآبلی متناهی است. در این پایان نامه درستی حدس را در هر یک از حالت های زیر نشان می دهیم. 1. (((?(g)?cg(z(?(g. 2. g یک p-گروه منظم غیر آبلی باشد. 3. 2=p و g از رده ی پوچ توانی 2 باشد. در حقیقت ما نتایج زیر را ثابت می کنیم. 1. فرض کنید g یک p-گروه ...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023